Real-Time Head Pose Estimation Using Random Regression Forests
نویسندگان
چکیده
Automatic head pose estimation is useful in human computer interaction and biometric recognition. However, it is a very challenging problem. To achieve robust for head pose estimation, a novel method based on depth images is proposed in this paper. The bilateral symmetry of face is utilized to design a discriminative integral slice feature, which is presented as a 3D vector from the geometric center of a slice to nose tip. Random regression forests are employed to map discriminative integral slice features to continuous head poses, given the advantage that they can maintain accuracy when a large proportion of the data is missing. Experimental results on the ETH database demonstrate that the proposed method is more accurate than state-of-the-art methods for head pose estimation.
منابع مشابه
Continous Head Pose Estimation using Random Regression Forests
Head pose is a rich visual cue that finds great interest in the field of human robot interaction (HRI) and for video surveillance applications. Previous attempts at solving this problem have often proposed solutions formulated in a classification setting. Furthermore, strong assumptions on illumination and scale in an occlusion-free environment have usually been made. We propose a regression so...
متن کاملAutomatic head pose estimation with Synchronized sub manifold embedding and Random Regression Forests
Head pose can indicate the eye-gaze direction and face toward which is an important part of human motion estimation and understanding. Due to physical factors of the camera, shooting environment, as well as the appearance change of humanity, the head pose estimation becomes a challenging task. Synchronization sub manifold embedding can find the internal structure of nonlinear data for nonlinear...
متن کاملReal Time Head Pose Estimation from Consumer Depth Cameras
We present a system for estimating location and orientation of a person’s head, from depth data acquired by a low quality device. Our approach is based on discriminative random regression forests: ensembles of random trees trained by splitting each node so as to simultaneously reduce the entropy of the class labels distribution and the variance of the head position and orientation. We evaluate ...
متن کاملNUI framework based on real-time head pose estimation and hand gesture recognition
The natural user interface (NUI) is used for the natural motion interface without using device or tool such as mice, keyboards, pens and markers. In this paper, we develop natural user interface framework based on two recognition module. First module is real-time head pose estimation module using random forests and second module is hand gesture recognition module, named Hand gesture Key Emulati...
متن کاملA Real-Time System for Head Tracking and Pose Estimation
Driver’s visual attention provides important clues about his/ her activities and awareness. To monitor driver’s awareness, this paper proposes a real-time person-independent head tracking and pose estimation system using a monochromatic camera. The tracking and head-pose estimation tasks are formulated as regression problems. Three regression methods are proposed: (i) individual mapping on imag...
متن کامل